Kostengünstig und ressourcenschonend zu grünem Wasserstoff

Werkstoffe 04. 04. 2023
  • Autoren dieses Artikels
  • 3323x gelesen

Soll die Energiewende gelingen, werden große Mengen an Wasserstoff benötigt. Im Projekt HighHy arbeitet ein internationales Forscherteam aus Deutschland und Neuseeland daran, die noch junge Technologie der AEM-Elektrolyse zur Herstellung von grünem Wasserstoff effizienter zu machen. Dafür setzen Wissenschaftler vom Fraunhofer-Institut für Fertigungstechnik und Angewandte Materialforschung IFAM in Dresden auf die gut verfügbaren und ressourcenschonenden Metalle Mangan und Nickel – und wollen das vielversprechende Elektrolyseverfahren so in die großflächige industrielle Anwendung bringen. Neben geringeren Kosten im Vergleich zu den derzeit gängigen Verfahren bietet die neue Technologie eine Reihe weiterer Vorteile.

Wie werden wir uns in Zukunft fortbewegen? Wie unsere Industrieanlagen betreiben und Energie über längere Zeiträume zwischenspeichern? Für viele Herausforderungen, die mit der Energiewende einhergehen, könnte Wasserstoff die Lösung sein: Einsetzbar sowohl im Straßenverkehr als auch in der Industrie und Wärmeversorgung ist das leichteste Element im Periodensystem ein wahres Multitalent. Gerade weil Wasserstoff so flexibel hinsichtlich seiner Anwendungsmöglichkeiten ist, werden in Zukunft voraussichtlich große Mengen davon benötigt. Die massenhafte Herstellung steht derzeit aber noch vor vielfältigen Herausforderungen – einigen von ihnen möchte das Projektteam von HighHy mit der Entwicklung von Katalysatoren für eine hocheffiziente und zugleich kostengünstige Wasserstoffproduktion begegnen.

Schema einer AEM-Elektroysezelle: Das Herzstück ist die Membran-Elektroden-Einheit (MEA), die aus der Anionen-leitenden Membran und den unmittelbar verbundenen Elektroden besteht (© Fraunhofer IFAM Dresden)

 

Wasserstoffherstellung mit ­gängigen Elektrolyseverfahren

Im industriellen Maßstab lässt sich Wasser­stoff durch Elektrolyse herstellen: Wasser­moleküle werden in einem mit einem Leitsalz versetztem Wasser, dem sogenannten Elektrolyten, mittels elektrischer Energie in Wasserstoff und Sauerstoff gespalten. Die Energie wird in Form von chemischen Bindungen in Wasserstoff aufgenommen und gespeichert. Das Gas bietet somit eine attraktive Möglichkeit, Energie, die etwa durch starken Wind oder Sonne in Windkraft- oder Solaranlagen ­entsteht und nicht direkt ins Netz eingespeist werden kann, langfristig zu speichern. Solchen durch regenerative Energiequellen erzeugten Wasserstoff bezeichnet man als grün.

Derzeit sind im größeren Maßstab vor allem drei Elektrolyseverfahren im Einsatz. Technisch relevant und historisch am weitesten verbreitet ist die alkali­sche Elektrolyse (AEL), bei der dem Wasser zum Beispiel Kaliumhydroxid zugegeben wird. Ein Nachteil ist der geringe untere Teillastbereich, das heißt, dass bei Nutzung eines fluktuierenden Stromangebots nicht die gesamte Bandbreite als elektrische Last abgenommen werden kann. Bei der Elektrolyse mit einem Protonenaustauschmembran-Elektrolyseur (Proton Exchange Membrane, PEM-EL) wandern Wasserstoffionen in stark saurer Umgebung durch eine gasdichte Membran, die in direktem Kontakt zu den Elektroden steht (sogenannte Membran-Elektroden-Einheit oder Membrane Electrode Assembly, MEA). Dieser Ansatz ermöglicht eine hohe Leistungsdichte und ein sehr dynamisches Lastverhalten bei stets hoher Gasreinheit – allerdings benötigt man für die Elektroden seltene und teure Edelmetalle wie Iridium, die der stark korrosiven Umgebung standhalten, sowie teure Membranen.

Projekt HighHy: Katalysatoren für die hocheffiziente AEM-Elektrolyse

Eine vergleichsweise neue Methode stellt die Elektrolyse mittels Anionenaustauschmembranen (Anion Exchange Membran, AEM) dar. Sie vereint die Vorteile der AEL, mit ihrer hohen Langzeitstabilität sowie dem Einsatz von gut verfügbaren und kostengünstigen Metallen, mit denen der PEM-EL, also der höheren Leistung, der Anpassbarkeit an unterschiedliche Lasten und der ­Gasreinheit. In der industriellen Anwendung konnte sich die AEM-Elektrolyse bislang noch nicht durchsetzen, da die in ihr stattfindende Sauerstoff-Entwicklungs-Reaktion (Oxygen Evolution Reaction, OER) bei Verwendung von Nicht-Edelmetallen mit zu geringer Geschwindigkeit abläuft. Infolgedessen ist die benötigte Zellspannung der Wasserelektrolyse für die angestrebten Stromdichten und somit der Energiebedarf für die Wasserstoffherstellung sehr hoch.

Genau mit dieser Problematik befasst sich das Projekt HighHy: Die deutsch-neuseeländische Zusammenarbeit, die im Rahmen der Forschungskooperation Grüner Wasserstoff mit Neuseeland des Bundesministeriums für Bildung und Forschung (BMBF) gefördert wird, hat die Entwicklung von OER-Katalysatoren und in der Folge von hocheffizienten AEM-Elektrolyseuren zum Ziel. Zusammen mit drei neuseeländischen Universitäten und der Universität Bayreuth suchen wir nach der idealen Zusammensetzung für die benötigten Katalysatoren, fasst Dr. Christian Bern­äcker, Leiter der Arbeitsgruppe Elektrochemische Technologie am Fraunhofer IFAM, das Ziel des Projekts zusammen.

Um mittels AEM-Elektrolyse grünen Wasserstoff im Industriemaßstab gewinnen zu können, wollen die Forschenden im Projekt HighHy eine innovative Nickel-Mangan-Verbindung als OER-Katalysator einsetzen. Die Mischung bietet entscheidende Vorteile: Beide verwendeten Metalle sind rohstoffseitig gut verfügbar und kostengünstig. Gleichzeitig können sie mit vielversprechender chemischer Aktivität punkten. Mit dem Ziel vor Augen, eine ideale Verbindung für die industrielle Anwendung zu entwickeln, arbeiten die Teams der an HighHy beteiligten Institutionen parallel an möglichen Lösungen. Clemens Kubeil, wissenschaftlicher Mitarbei­ter in der Abteilung ­Wasserstofftechnologie am Fraunhofer IFAM in Dresden und dort zuständig für das Projekt, beschreibt die Vorgehensweise: Der komplementäre ­Ansatz sei etwas Besonderes: Die Projektpartner erprobten viele unterschiedliche Synthesemethoden, Zusammensetzungen, Oberflächenstrukturen und Materialgrößen für die Beschichtung der Katalysatoren. Am Ende solle aber nur eine – die beste – Lösung ausgewählt und anhand eines Demonstrators, der in Neuseeland entsteht, umfassend getestet werden.

Das Team des Fraunhofer IFAM bringt in die Katalysatorentwicklung seine Expertise für pulvermetallurgische Strategien ein: Neben der elektrochemischen Aktivität des Katalysators gilt es, die elektrische Kontaktierung der Elektroden sowie den Elektrolytfluss zu optimieren und dabei die Gasblasen von der Elektrode vorteilhaft abzuleiten. Dafür spielt Know-how rund um poröse Strukturen, wie sie auch beim Einsatz von Nickel-Mangan-Pulver für die Beschichtung entstehen, eine entscheidende Rolle. Insgesamt erhoffen sich die Forschenden, dass durch die neuen Katalysatoren die für die Sauerstoffentstehung notwendige elektrische Energie verringert und somit die Effizienz der AEM-Elektrolyse gesteigert werden kann.

Preis, Flexibilität, Wasserstoff-Reinheit: Hohes Potenzial der AEM-Elektrolyse

Das Potenzial einer industriell ­anwendbaren AEM-Elektrolyse ist groß: Die EU-Ziele für den Energieeinsatz bei der Elektrolyse mit dem neuen Verfahren liegen für das Jahr 2030 bei etwa 48 Kilowattstunden pro Kilogramm hergestelltem Wasserstoff. Damit könnte die AEM-EL rund 80 Prozent Effizienz und damit ähnliche Werte erreichen wie die bisher etablierten Verfahren AEL und PEM-EL – bei deutlich höherer Flexibilität hinsichtlich gefahrener Lasten und Einsatzorte sowie entscheidend geringeren Materialkosten. Heruntergerechnet auf den entstehenden Wasserstoff läge das Preisziel für die Anschaffungskosten des AEM-Elektrolysesystems laut Clemens Kubeil bei etwa 300 Euro je installiertem Kilowatt, wohingegen die PEM-EL bei rund 500 Euro rangiere. Selbst bei der klassischen alkalischen Elektrolyse setze man derzeit noch 400 Euro als Ziel an. Damit ist die AEM-EL die einzig ernstzunehmende Elektrolyse-Variante, was den Preis angeht, fasst Clemens Kubeil zusammen. Ein weiterer Vorteil liegt ihm zufolge darin, dass dank der gasdichten Membran sowie des geringer konzentrierten Elektrolyts und asymmetrischem Elektrolytflusses unter großen ­Drücken produziert werden kann. Dadurch lasse sich sehr reiner und gleichzeitig komprimierter Wasserstoff herstellen, der leichter eingespeist werden könne. Dies wiederum ermöglicht das schnellere Hoch- und Herunterfahren und den Teillastbetrieb von Systemen – all das ist sehr interessant, wenn man eine Anwendung in den fluktuierenden Markt einbringen will, so Kubeil.

Text zum Titelbild: Das Fraunhofer IFAM entwickelt im Projekt HighHy mit deutschen und neuseeländischen Partnern hochaktive Katalysatormaterialien und deren Einbringung in eine Membran-Elektroden-Einheit (© Fraunhofer IFAM Dresden)

Relevante Unternehmen

Video(s) zum Thema

Werbepartner

Links zu diesem Artikel

Aus- und Weiterbildung

Top