Wasserstoff ist für viele nicht nur im Periodensystem, sondern auch als grüne Energiequelle der Zukunft die Nummer 1. Diese Top-Position erfordert energieeffiziente und leistungsstarke Technik, um grünen Wasserstoff zu erzeugen und zu nutzen. Eine wichtige Rolle spielt dabei der Laser, wie aktuelle Aktivitäten des Fraunhofer ILT beweisen.
Sie wollen ernst machen in Sachen grüner Wasserstoff: Die Ampelkoalition will den Ausbau der Wasserstoffwirtschaft beschleunigen und bis 2030 mindestens zehn Gigawatt Elektrolysekapazität in Deutschland installieren. Damit nicht genug: Geplant sind Quoten für grünen Wasserstoff in der öffentlichen Beschaffung, der Aufbau einer Europäischen Union für grünen Wasserstoff sowie die Umsetzung der Nationalen Wasserstoffstrategie der Bundesregierung. Die Pläne sind ambitioniert, denn noch ist grüner Wasserstoff selten. Nach Mitteilung des Fraunhofer ILT stammten gerade mal fünf Prozent des 2021 in Deutschland erzeugten und verbrauchten Wasserstoffs (rund 60 Terawattstunden) aus nachhaltiger Produktion. Der Bedarf an wettbewerbsfähiger Technik zur Herstellung von grünem Wasserstoff ist entsprechend hoch.
Hier kommt das Fraunhofer-Institut für Lasertechnik ILT ins Spiel, das hochproduktive laserbasierte Verfahren für die Serienproduktion von Brennstoffzellen und Elektrolyseuren entwickelt. Für den Einsatz von Lasern sprechen hohe Präzision, Flexibilität und Skalierbarkeit der Prozesse sowie die Integrierbarkeit in bestehende Produktionsanlagen. Zudem ist Lasern selbst ein nachhaltiger Prozess, weil er CO2-Emissionen und den Verbrauch von Ressourcen senkt.
Humping-Grenze verschoben: Mit dem Laser wasserstoffdicht schweißen
Besondere Herausforderungen stellt die Brennstoffzelle: Sie benötigt außer der Membran-Elektrodeneinheit jeweils 300 bis 400 Bipolarplatten (BPP). Dort sind neue Fertigungsverfahren gefragt für die bisherige zu langsame und zu teure Herstellung. Den Aachenern Forschern gelang es mit Hilfe von angepassten Wellenlängen und gezielter Strahlmodulation, Bleche extrem schnell, prozesssicher wasserstoffdicht zu BPP zu verschweißen. Trotz Vorschubgeschwindigkeiten von bis zu 60 Meter pro Minute kam es nicht zum Humping-Effekt, bei dem das Schmelzbad abhebt, perlt und die Naht undicht wird. In Kombination mit Inline-Prozesskontrolle zur Überwachung und Dokumentation ist Laserstrahlschweißen ein effizienter und reproduzierbarer Fertigungsprozess für die Hochrateproduktion von metallischen Bipolarplatten, sagt Dr. Alexander Olowinsky, Abteilungsleiter Fügen und Trennen am Fraunhofer ILT.
Ganz neu sind bei Brennstoffzellen BPP aus thermoplastischem Kunststoff, die sich ebenfalls mit dem Laser fügen lassen. Weil transparente Bauteile nur eine geringe Absorption besitzen, werden sie vor dem Schweißen häufig mit Ruß eingeschwärzt. Als Alternative entstand am Fraunhofer ILT das zweistufige Clearweld-Verfahren: Dank einer Infrarot-
Absorberschicht lässt sich die polymerbasierte BPP mit einem CO2-Laser schneiden und anschließend mit einem NIR-Diodenlaser schweißen. Man erhält laut Maximilian Brosda, Gruppenleiter Fügen von Polymeren und transparenten Materialien am Fraunhofer ILT, mit diesem Verfahren eine transparente Fügestelle. Das Verfahren eigne sich besonders gut zum Aufbau von Biopolarplatten-Stacks.
Für Anwendungen der Wasserstoffindustrie eignet sich das Laserauftragschweißen – etwa zur Herstellung von Elektrolyseuren, die oft aus unterschiedlichen Werkstoffpaarungen bestehen (© Fraunhofer ILT, Aachen)
Wirkungsgrad von PEM-Brennstoffzellen erhöhen
Eine andere Herausforderung entsteht bei PEM (Proton Exchange Membrane)-Brennstoffzellen. Dort bildet sich zum Beispiel bei Graphit-gefüllten thermoplastischen Compoundmaterialien ein Kunststofffilm auf der Oberfläche der Bipolarplatte, der die elektrische Anbindung der Gastransportschicht verhindert. Am Fraunhofer ILT entstand ein Verfahren, das mit Ultrakurzpulslaser die isolierende Kunststoffmatrix entfernt. Es handelt sich im Gegensatz zum mechanischen Schleifen um ein schonendes Verfahren, bei dem der ultrakurzgepulste Laserstrahl den Kunststoff selektiv entfernt, ohne das Füllmaterial zu beschädigen.
Schneiden statt Stanzen: Verschleißfrei Schneiden mit Hochgeschwindigkeit
Laser sind eine wirtschaftliche Alternative zu mechanischen Schneidverfahren wie etwa dem Scherschneiden. Das Laserstrahl-Hochgeschwindigkeitsschneiden kann in vielen Fällen konventionelle Stanzprozesse ersetzen. Nach Aussage von Alexander Olowinsky machen die hohe Flexibilität, Präzision und Prozessgeschwindigkeiten von mehreren Metern pro Sekunde das Laserstrahlschneiden zum optimalen Werkzeug, um metallische Bipolarplatten herzustellen. Es ist Olowinsky zufolge schnell, sicher und verschleißfrei und eigne sich sowohl für die Prototypenproduktion genauso wie für die Großserie.
Das Verfahren hat sich im Rahmen von CoBiP als ideal erweisen, einem gemeinsamen Projekt mit dem benachbarten Fraunhofer-Institut für Produktionstechnologie IPT, in dem eine kontinuierliche Rolle-zu-Rolle-Fertigung von metallischen, doppelwandigen BPP entsteht. Das Fraunhofer ILT entwickelte ein Rolle-zu-Rolle-Modul zum Laserschweißen und -schneiden, das nun in der CoBiP-Anlage beim Nachbarn mit Hochgeschwindigkeit gratfrei schneidet (weit über 100 m/min) und fehlerfrei unter Argongas schweißt (max. 30 m/min).
Für Anwendungen der Wasserstoffindustrie kommt ebenfalls der metallische 3D-Druck infrage. Zu den etablierten Verfahren zählt das Laserauftragschweißen (engl. Laser Material Deposition, LMD), das die Aachener seit über 30 Jahren intensiv erforschen und konsequent für verschiedene Anwendungsfelder und Branchen weiterentwickeln. Bewährt hat sich LMD etwa bei der Herstellung von Elektrolyseuren, die häufig aus unterschiedlichen Werkstoffpaarungen bestehen. So hat das Fraunhofer ILT eine LMD-Anlage entwickelt, mit der sich eine Baustahlplatte mit einer extrem dünnen, porösen Nickel-Aluminium-
Legierung beschichten lässt.
Wasserstoff-Labor bietet Praxisvielfalt
Diese Anlage sahen die 70 Teilnehmenden im Herbst 2022 in Aachen auf dem 3. Laserkolloquium Wasserstoff LKH2, seit 2020 ein Insider-Event der Wasserstoff-Community. Im Mittelpunkt der Veranstaltung des Fraunhofer ILT stand erneut die Serienproduktion von Elektrolyseuren und Brennstoffzellen im 300 Quadratmeter großen Wasserstofflabor. Es gibt zwar bundesweit ähnliche Einrichtungen, doch es besitzt laut Dr. Alexander Olowinsky, Initiator des LKH2 und Abteilungsleiter Fügen und Trennen am Fraunhofer ILT, ein besonderes Alleinstellungsmerkmal: Was die Vielfalt der praktischen Möglichkeiten betrifft, ist unser neues Wasserstoff-Labor einzigartig. Davon konnten sich die Gäste des LKH2 überzeugen, die im September bei Vorführungen an den Versuchsanlagen live erfuhren, wie sich mit dem Laser hauchdünne Metallplatten von 70 bis 100 Mikrometern Dicke präzise schneiden und prozesssicher zu gasdichten Stacks verschweißen lassen.
Insider-Event der Wasserstoff-Community: 70 Teilnehmende sahen sich im Herbst 2022 auf dem 3. Laserkolloquium Wasserstoff LKH2 im 300 Quadratmeter großen Wasserstofflabor die Serienproduktion von Elektrolyseuren und Brennstoffzellen an (© Fraunhofer ILT, Aachen)
Bei den hochinteressanten Vorführungen ging es darum, wie sich typische Probleme nicht nur im Labor, sondern auch unter Serienbedingungen verhindern lassen. Hier hat sich die Künstliche Intelligenz (KI) bereits mehrfach bewährt. Zwei Beispiele von vielen: Dr. Frank Schneider, Gruppe Makrofügen und Schneiden am Fraunhofer ILT, stellte den digitalen Prozess-Onlineoptimierer für intelligente Lasermaschinen (DIPOOL) vor, bei dem die Forschenden erstmals die zeitliche und räumliche Programmier- und Kontrollierbarkeit von Laserwerkzeugen mit maschinellem Lernen kombinieren. In diesem Projekt arbeitet das Institut im Rahmen des BMBF-Projekts DIPOOL eng mit einer vollkommen neuartigen, multispektralen Sensorik von der 4D Photonics GmbH aus Isernhagen zusammen, die Geschäftsführer Christoph Franz als Weldwatcher beim Schweißen von Bipolarplatten einsetzt.
Siamesisches neuronales Netzwerk vergleicht Ausschnitte
Christian Knaak, Gruppe Prozesssensorik und Systemtechnik am Fraunhofer ILT, setzt dagegen beim schnellen Erkennen von Spritzern beim BPP-Laser-Mikroschweißen auf ein sogenanntes siamesisches neuronales Sensor-Netzwerk. Dieses Netzwerk analysiert nicht das ganze Bild, sondern vergleicht nur charakteristische Ausschnitte miteinander. Mit Blick auf weitergehende Forschungen regt Knaak an, künftig nicht nur den eigentlichen Laserprozess mit KI-Hilfe zu überwachen, sondern auch vor- und nachgelagerte Verfahrensschritte ins Visier zu nehmen.
Wie es in Sachen Wasserstoff und Laser weitergeht, erfahren Interessenten vom 19. bis 20. September 2023 auf dem nächsten Laserkolloquium Wasserstoff LKH2 in Aachen.
- www.ilt.fraunhofer.de