Die Vorgaben der Europäischen Kommission sind ehrgeizig: Die ReFuelEU Aviation-Verordnung schreibt eine Drosselung der CO2-Emissionen der Luftfahrt bis zum Jahr 2050 um 60 Prozent im Vergleich zu 1990 vor. Geplant ist zudem ein umfassendes EU-Weltraumgesetz (EUSL), unter anderem mit Regeln zur Nachhaltigkeit von Weltraumaktivitäten. Unterstützung erhalten die Aerospace-Unternehmen vom Fraunhofer-Institut für Lasertechnik ILT aus Aachen und seinen neuen additiven Fertigungsverfahren, die den ökologischen Fußabdruck erheblich verbessern und die Produktionskosten senken.
Wie kann Luftfahrt grüner gestaltet werden? fragt Luke Schüller, wissenschaftlicher Mitarbeiter am Fraunhofer ILT, in einem Fachbeitrag und er nennt auch gleich die Antwort: strenge politische Klimaschutzvorgaben mit Leichtbau, 3D-Druck und neuen Hochleistungswerkstoffen umsetzen. Eine Hauptrolle spielt das LPBF-Verfahren (Laser Powder Bed Fusion), bei dem Metallpulver schichtweise mit dem Laserstrahl verschmolzen wird. Diese Methode ermöglicht nach Mitteilung des Fraunhofer ILT die Herstellung von komplexen und hochfesten Bauteilen, die nicht nur leichter, sondern auch widerstandsfähiger sind, wichtige Eigenschaften in der Luftfahrt von morgen.
Luke Schüller (© Fraunhofer ILT, Aachen)
Teamwork mit Materialherstellern: Spezialpulver für die Wasserstoffzukunft
Das Fraunhofer ILT arbeitet an der Entwicklung im Rahmen der Forschungsinitiative TIRIKA (Technologien und Innovationen für eine ressourcenschonende, klimafreundliche Luftfahrt) des Bundesministeriums für Wirtschaft und Klimaschutz. Der Schwerpunkt liegt auf der Nutzung von Wasserstoff als emissionsfreien Energieträger für die Luftfahrt. Die Fachleute haben dem Fraunhofer ILT zufolge zusammen mit Materialherstellern spezielle Pulver entwickelt, die den hohen Anforderungen der Luftfahrtindustrie für Wasserstoffantriebe gerecht werden. Die Experten haben LPBF-Prozesse für handelsübliche Werkstoffe entwickelt und schließlich in Zusammenarbeit mit den Partnern durch verschiedene Prüfverfahren validiert.
Durch gezielte Prozessanpassungen im LPBF-Verfahren können wir eine relative Bau-teildichte von über 99,5 Prozent und eine hohe Aufbaurate von mehr als 100 cm3/h erreichen, erklärt Schüller. Die Aluminiumlegierungen sind nicht nur leicht und hochfest, sondern auch widerstandsfähig gegenüber Wasserstoff, der bei hohen Temperaturen und Drücken zu Versprödung und Materialermüdung führen kann. Das macht sie zu idealen Kandidaten für den Einsatz in zukünftigen emissionsfreien Wasserstofftriebwerken. Hinzu kommt: Die neuen speziellen Pulver ermöglichen dank des gleichmäßigen Laser-Schmelzverfahrens komplexe Geometrien und Funktionsstrukturen, die mit herkömmlichen Verfahren wie Gießen oder Schmieden nicht verwirklichbar sind.
Elektronischer Erkennungsdienst für 0,4-Millimeter-Partikel
Während des Fertigungsprozesses erkennt eine präzise Sensorik Artefakte bis zu einer Größe von 0,4 Millimetern direkt im Pulverbett und im Schmelzprozess. So können zeitaufwändige nachgelagerte Prüfungen minimiert und die Produktionseffizienz erheblich gesteigert werden.
Fortschrittliche Verfahren beeinflussen jedoch nicht nur die Qualität und Effizienz der Produktion, sondern auch deren ökologische Bilanz. Das Fraunhofer ILT setzt beim Bewerten der Umweltfreundlichkeit von additiven Fertigungsprozessen auf Life Cycle Assessment (LCA). Dabei wird der gesamte Lebenszyklus eines Bauteils betrachtet – von der Rohmaterialbeschaffung über die Fertigung bis zum Recycling. Das Life Cycle Assessment ist für uns ein unverzichtbares Instrument, um die Umweltwirkungen von Produkten über ihren gesamten Lebenszyklus hinweg zu bewerten und nachhaltige Alternativen zu identifizieren, sagt Dr. Tim Lantzsch, Leiter der Abteilung Laser Powder Bed Fusion am Fraunhofer ILT. Um diesen umfassenden Prozess effektiv zu gestalten, ist es jedoch entscheidend, bereits in einer frühen Phase der digitalen Wertschöpfungskette qualitativ hochwertige und aussagekräftige Daten zu erhalten.
Dr. Tim Lantzsch (© Fraunhofer ILT, Aachen)
Drei wichtige Argumente sprechen für diesen anfangs sehr mühevollen Weg: Erstens ermöglichen Daten eine schnellere und effizientere Gestaltung von Anlaufprozessen für neue Produkte. Zweitens unterstützen sie die Bewertung von Qualität, Kosten, Energie- und Ressourcenverbrauch im Produktionszyklus. Drittens tragen sie zu einer höheren Transparenz in den Prozessen und so zur Optimierung der gesamten Fertigungskette bei.
Die Ergebnisse der LCA-Analysen zeigen, so das Fraunhofer ILT, dass trotz des vergleichsweise hohen Energieverbrauchs während des LPBF-Prozesses der ökologische Fußabdruck der additiven Fertigung deutlich kleiner ausfällt als bei konventionellen Produktionsmethoden. Der 3D-Druck eignet sich daher besonders zur Reparatur von Bauteilen, weil er Materialverluste minimiert und Ressourcen schont.
Mit LMD schneller und kostengünstiger ins All
Additive Verfahren stehen auch im Mittelpunkt des im November 2022 gestarteten EU-Projekts ENLIGHTEN (European iNitiative for Low cost, Innovative & Green High Thrust ENgine Projekt), das die Ariane-Gruppe steuert und koordiniert. 18 Partner aus acht europäischen Ländern haben seit dem Projektstart ein Ziel: Die Entwicklung kostengünstiger und umweltfreundlicher Raketenantriebe, die unter anderem mit Biomethan und grünem Wasserstoff arbeiten. Die neuen Ökotriebwerke sollen die nächste Generation europäischer wiederverwendbarer Raketen antreiben und so Europas Wettbewerbsfähigkeit im globalen Raumfahrtsektor stärken.
Robust, zuverlässig und geregelt: Das Fraunhofer ILT entwickelt im Projekt ENLIGHTEN ein prozesssicheres Laserauftragschweiß-Verfahren, das den gesamten Prozess überwacht, Anomalien erkennt, behebt und so für gleichbleibend hohe Bauteilqualität sorgt (© Fraunhofer ILT, Aachen/Ralf Baumgarten)
Hier kommt das Aachener Institut ins Spiel. Fachleute der Gruppe Additive Fertigung und Reparatur LMD entwickeln im Rahmen des Projekts einen Prozess, um Raketenkomponenten mit Laserauftragschweißen (Laser Material Deposition, LMD) effizienter und präziser herzustellen. Das Besondere ist, dass wir durch LMD die Geschwindigkeit und Wirtschaftlichkeit bei der Herstellung neuartiger Raketendüsen drastisch verbessern, erklärt Min-Uh Ko, Gruppenleiter Additive Fertigung und Reparatur LMD am Fraunhofer ILT. Das untersuchte Design verfüge, abgesehen von seinem großen Bauraum, über außergewöhnlich filigrane und dünnwandige Kühlkanäle, die mit konventionellen Fertigungsrouten nur unter großem Aufwand realisiert werden könnten. Die Ziele bis zum Projektende im Oktober 2025: die LMD-Fertigung einer Düse für den Einsatz in der nächsten Raketengeneration im Ariane-Programm und der Aufbau eines maßstabsgetreuen Demonstrators.
Gegen konventionelle Methoden spricht dem Fraunhofer ILT zufolge der bisher übliche Prozess: Weil kein Unternehmen alle unterschiedlichen Prozessschritte in einer lokalen Produktion anbieten kann, müssen die Bauteile zu mehreren Standorten transportiert werden. Die dadurch entstehende Prozesskette führt zu einer zeit- und kostenaufwändigen Produktion, die oft mehrere Monate dauert. Jochen Kittel, Projektleiter des ENLIGHTEN-Vorhabens am Fraunhofer ILT: Mit unserer Prozesstechnologie, die viele einzelne Prozessschritte einspart, gelingt uns nicht nur eine deutliche Kostenreduktion. Zeitgleich verkürzen wir die Produktionszeit einer Raketendüse deutlich.
Den Prozess ganzheitlich im Griff
Die Fachleute gehen das Projekt ganzheitlich an: Bis zum Projektende soll ein prozesssicheres, geregeltes Herstellverfahren inklusive Qualitätssicherung für die Serienfertigung entstehen. Ein Inline-System soll mit Sensorik den gesamten Prozess überwachen, Prozessanomalien erfassen, beheben und für konstant hohe Bauteilqualität sorgen. Min-Uh Ko ist überzeugt, dass eine erfolgreiche Entwicklung von Verfahren und Demonstrator einen Durchbruch markieren würde: Mit unseren Ergebnissen können wir die Industrie dazu befähigen, als Zulieferer für die Luft- und Raumfahrtindustrie künftig auf ihren eigenen Anlagen via LMD ebenso große, komplexe und filigrane Strukturen herzustellen.
Kontakt
Dr. Tim Lantzsch, Abteilungsleiter Laser Powder Bed Fusion, E-Mail: tim.lantzsch@ilt.fraunhofer.de
Min-Uh Ko M. Sc., Leiter der Gruppe Additive Fertigung und Reparatur LMD, E-Mail: min-uh.ko@ilt.fraunhofer.de
- www.ilt.fraunhofer.de