Wie die Natur Biokatalysatoren vor Sauerstoff abschirmt
Bakterien, die unter bestimmten Bedingungen Wasserstoff (H2) herstellen, nutzen dafür unter anderem sogenannte [FeFe]-Hydrogenasen. Diese Enzyme sind die effizientesten Wasserstoff-produzierenden Biokatalysatoren. Die meisten dieser Proteine werden jedoch durch Sauerstoff zerstört, sodass sie für die Wasserstoffproduktion in großem Maßstab nur schwierig einsetzbar sind. Eine Ausnahme bildet die [FeFe]-Hydrogenase CbA5H aus dem Bakterium Clostridium beijerinckii, die auch in Gegenwart von Sauerstoff aktiv bleibt. Ihre Tricks konnte ein internationales Team aus der Arbeitsgruppe Photobiotechnologie der Ruhr-Universität Bochum und der Proteinkristallographie-Gruppe der Universität Osaka, Japan, unter der Leitung von Prof. Dr. Thomas Happe und Prof. Dr. Genji Kurisu, aufdecken.
Eine Studie über eine Teilstruktur des Enzyms CbA5H aus dem Jahr 2021 hatte gezeigt, dass sein aktives Zentrum durch eine nahegelegene schwefelhaltige Gruppe abgeschirmt wird. Das hat uns eine Hypothese über den Schutzmechanismus erlaubt, so Thomas Happe. Aber wir wissen daher noch nicht, wie das Enzym Wasserstoff produziert.
In Zusammenarbeit mit der japanischen Gruppe haben die Bochumer Forschenden nun eine vollständige Struktur von CbA5H analysiert. Dazu nutzten sie die Kryo-Elektronenmikroskopie unter Abwesenheit von Sauerstoff. Die gewonnene Struktur zeigt, dass die abschirmende schwefelhaltige Gruppe vom aktiven Zentrum abgelöst ist und somit den wasserstoffproduzierenden Zustand von CbA5H darstellt. Der Vergleich der Strukturen, die unter Abwesenheit beziehungsweise in Anwesenheit von Sauerstoff analysiert wurden, erlaubt uns Rückschlüsse auf die Funktionsweise und den Schutz vor Sauerstoff, so Erstautor Jifu Duan.
Zink stabilisiert CbA5H
Neben den Erkenntnissen über die Funktionsweise von CbA5H und die Prinzipien des Sauerstoffschutzes liefert die vollständige Struktur auch in anderer Hinsicht wichtige Informationen: CbA5H bildet ein Homodimer, das bedeutet, zwei CbA5H-Moleküle werden zusammengefügt, um die minimale Funktionseinheit zu bilden. Das Homodimer wird durch einen Zinkionen-bindenden Teil gehalten. Das Zink-abhängige Homodimer ist deutlich stabiler als die monomere Form. Der Nachweis gelang durch eine genetische Veränderung, die zur Entfernung des Zinks führte.
Insgesamt bietet die Studie ein sehr gutes Verständnis des Arbeitsmechanismus, der Sauerstoff-Schutzstrategie und der von der Dimerisierung abhängigen Stabilität. Diese Erkenntnisse können uns bei der Entdeckung neuer Sauerstoff-resistenter [FeFe]-Hydrogenasen helfen.
Förderung: Die Forschenden erhielten Fördermittel vom Bundesministerium für Bildung und Forschung im Rahmen des Projekts „H2-Lab“ sowie von der Deutschen Forschungsgemeinschaft im Rahmen der Exzellenzstrategie – EXC2033-390677874-RESOLV und der Graduiertenschule MiCon.
Originalpublikation: Jifu Duan, Andreas Rutz, Akihiro Kawamoto et al.: Structural Determinants of Oxygen Resistance and Zn2+-Mediated Stability of [FeFe]-Hydrogenase from Clostridium beijerinckii, in: PNAS, 2024, DOI: 10.1073/pnas.2416233122, https://www.pnas.org/doi/10.1073/pnas.2416233122
https://www.photobiotechnologie.ruhr-uni-bochum.de
Aktuelle Onlineartikel
-
16. 01. 2025 Deutsche Wirtschaft in Stagnation gefangen
-
15. 01. 2025 Graphen für Ionen durchlässig gemacht
-
15. 01. 2025 Wie die Natur Biokatalysatoren vor Sauerstoff abschirmt
-
15. 01. 2025 Neues Forschungsnetzwerk für Bioelektronik in Sachsen
-
14. 01. 2025 Automatisierte Materialentwicklung für Solarzellen
-
13. 01. 2025 Nanodrähte für leistungsfähigere Computer